Orientasi Dosis Iradiasi Efektif Pada Perbaikan Genetik Padi (Oryza sativa L.) Lokal Padang Pariaman Melalui Mutasi Induksi

Authors

  • Henny Puspita Sari Andalas University
  • Irfan Suliansyah Universitas Andalas
  • Indra Dwipa Universitas Andalas
  • Dini Hervani Universitas Andalas

DOI:

https://doi.org/10.21776/ub.protan.2023.011.06.08

Keywords:

Mutasi Sinar Gamma, LD50, Iradiasi, Padi lokal

Abstract

Peneliti menggunakan induksi mutasi pada padi untuk menciptakan keragaman genetik yang tinggi. Populasi dasar dengan keragaman genetik yang tinggi akan memudahkan proses seleksi karakter yang diinginkan. Penelitian ini bertujuan untuk mengetahui dosis optimal yang menginduksi keragaman genetik tertinggi pada tiga genotipe padi sawah. Bahan penelitian adalah tiga genotipe padi sawah yaitu “Madang Pulau”, “Putiah Papanai” dan “Banang Kuniang”. Iradiasi gamma dilakukan di Pusat Aplikasi Isotop dan Radiasi (PAIR) BATAN. Setiap genotipe diiradiasi dengan dosis 0, 100, 200, 300, 400 500 dan 600 Gy. Penyemaian dilakukan di lahan percobaan Fakultas Pertanian Universitas Ekasakti. Pengamatan dilakukan terhadap persentase kecambah (%), tinggi bibit dan panjang akar. Nilai LD50 ditentukan berdasarkan hasil analisis regresi persentase kecambah. Hasil penelitian menunjukkan bahwa (1) persentase kecambah yang tumbuh menurun seiring dengan peningkatan dosis iradiasi gamma, kecuali pada genotipe “Puputiah Papanai”, sedangkan tinggi bibit dan panjang akar untuk ketiga genotype yang tumbuh menurun seiring dengan peningkatan dosis iradiasi gamma (2) nilai LD50 pada Genotype Madang Pulau, Putiah Papanai, dan Banang Kuniang masing-masing adalah 333.58 Gy, 377.62 Gy, dan 291.14 Gy. (3) dosis optimal iradiasi sinar gamma untuk ketiga genotype berkisar pada dosis 200-300 Gy. (4) Di antara tiga genotipe padi yang diuji, mutan “Banang Kuiang”.

References

[ISTA] International Seed Testing Association. 2007. International Rules for Seed Testing (Basserdorf). Switzerland.

Abdel-Hady, M. S., Okasha, E. M., Soliman, S. S. A., & Talaat, M. 2008. Effect of Gamma Radiation and Gibberellic Acid on Germination and Alkaloid Production in Atropa belladonna l. Australian Journal of Basic and Applied Sciences, 2(3), 401–405.

Abdelnour-Esquivel, A., Perez, J., Rojas, M., Vargas, W., & Gatica-Arias, A. 2020. Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought. In Vitro Cellular and Developmental Biology - Plant, 56(1), 88–97. https://doi.org/10.1007/s11627-019-10015-5

Ahloowalia, B. S., Maluszynski, M., & Nichterlein, K. 2004. Global impact of mutation-derived varieties. Euphytica, 135 (2), 187–204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

Al-Mamari, A.G. H. K., & Ghanim, A. M. A. 2018. Mutation Induction For Sorghum And Rice Using Gamma and X-Ray Radiations. In Plant Mutation Breeding and Biotechnology (hal. 139). IAEA-CN-263-256.

Aynehband, A., & Afsharinafar, K. 2012. Effect of gamma irradiation on germination characters of amaranth seeds. European Journal of Experimental Biology, 2(4), 995–999.

Baldwin, J., & Grantham, V. 2015. Radiation hormesis: Historical and current perspectives. Journal of Nuclear Medicine Technology, 43(4), 242–246. https://doi.org/10.2967/jnmt.115.166074

Çelik, Ö., & Atak, Ç. 2016. Applications of Ionizing Radiation in Mutation Breeding. Intech, 11, 111–132.

Chaudhuri, S. K. 2002. A simple and reliable method to detect gamma irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test. Radiation Physics and Chemistry, 64(2), 131–136. https://doi.org/10.1016/S0969-806X(01)00467-4

Crouthamel, C. E. 1975. Applied Gamma-Ray Spectrometry (Second Edi). Oxford: Pergamon Pres. https://doi.org/10.13182/nse61-a25919

De Micco, V., Arena, C., Pignalosa, D., & Durante, M. 2011. Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics, 50(1), 1–19. https://doi.org/10.1007/s00411-010-0343-8

Efendi, Bakhtiar, Zuyasna, Alamsyah, W., Syamsuddin, Zakaria, S., … Sobrizal. 2017. The Effect of Gamma Ray Irradiation on Seed Viability and Plant Growth of Aceh’s Local Rice (Oryza sativa L.). Advances in Natural and Applied Sciences, 11(3), 91–96.

El-Degwy, I. S. 2013. Mutation Induced Genetic Variability in Rice (Oryza sativa L.). Egyptian Journal of Agronomy, 35(2), 199–209. https://doi.org/10.21608/agro.2013.87

Gaul, H. 1970. Mutagen effects observable in the first generation (Manual on). Vienna: International Atomic Energy Agency.

Gowthami, R., Vanniarajan, C., Souframanien, J., & Arumugam Pillai, M. 2017. Comparison of radiosensitivity of two rice (Oryza sativa L.) varieties to gamma rays and electron beam in M1 generation. Electronic Journal of Plant Breeding, 8(3), 732–741. https://doi.org/10.5958/0975-928X.2017.00111.9

Harding, S. S., Johnson, S. D., Taylor, D. R., Dixon, C. A., & Turay, M. Y. 2012. Effect of Gamma Rays on Seed Germination, Seedling Height, Survival Percentage and Tiller Production in Some Rice Varieties Cultivated in Sierra Leone. American Journal of Experimental Agriculture, 2(2), 247–255. https://doi.org/10.9734/ajea/2012/820

Haris, A., Abdullah, Bakhtiar, Subaedah, Aminah, & Jusoff, K. 2013. Gamma ray radiation mutant rice on local aged dwarf. Middle East Journal of Scientific Research, 15(8), 1160–1164. https://doi.org/10.5829/idosi.mejsr.2013.15.8.11541

Hong, M. J., Kim, D. Y., Ahn, J. W., Kang, S. Y., Seo, Y. W., & Kim, J. B. 2018. Comparison of radiosensitivity response to acute and chronic gamma irradiation in colored wheat. Genetics and Molecular Biology, 41(3), 611–623. https://doi.org/10.1590/1678-4685-gmb-2017-0189

Jaipo, N., Kosiwikul, M., Panpuang, N., & Prakrajang, K. 2019. Low dose gamma radiation effects on seed germination and seedling growth of cucumber and okra. Journal of Physics: Conference Series, 1380, 1–5. https://doi.org/10.1088/1742-6596/1380/1/012106

Jan, S., Parween, T., Siddiqi, T. O., & Mahmooduzzafar, X. 2012. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews, 20(1), 17–39. https://doi.org/10.1139/a11-021

Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J., & Till, B. J. 2017. Biotechnologies for plant mutation breeding. Switzerland: Springer International Publishing.

Kadhimi, A. A., Zain, C. R. C. M., Alhasnawi, A. N., Isahak, A., Ashraf, M. F., Mohamad, A., … Yusoff, W. M. W. 2016. Effect of irradiation and polyethylene glycol on drought tolerance of MR269 genotype rice (Oryza sativa L.). Asian Journal of Crop Science, 8(2), 52–59. https://doi.org/10.3923/ajcs.2016.52.59

Khannetah, K., Pushpam, R., Ganesan, K., KK Kumar, Pillai, C., Chandrashekar, & Arumugam, M. 2021. Appraising LD50 dosage for physical mutagen (Gamma rays) in CR1009 and CR1009 sub1 rice varieties. Journal of …, 10(1), 2715–2719.

Kodym, A., & Afza, R. 2003. Physical and chemical mutagenesis. Methods in molecular biology (Vol. 236). https://doi.org/10.1385/1-59259-413-1:189

Kuzin, A. M., Vagabova, M. E., & Revin, A. F. 1976. Molecular mechanisms of ionizing radiation stimulating effect on seeds. Activation of RNA synthesis. Radiobiologiia, 16(2), 259–261. https://doi.org/https://doi.org/

Lagoda, P. 2012. Effects of radiation on living cells and plants. (B. P. and In Shu, Q.Y., Forster & H. Nakagawa, Ed.) (Plant Muta). UK: CABI.

Lee, S.-I., Park, J.-W., Kim, J.-B., Kang, S.-Y., Choi, H.-I., & Han, S.-M. 2019. Evaluation of Radiosensitivity of Rice (Oryza sativa L) Seeds Exposed to Proton Beams and Gamma Rays and Investigation of Optimal Doses for Mutation Induction. Journal of Radiation Industry, 13(3), 173–782.

Marcu, D., Damian, G., Cosma, C., & Cristea, V. 2013. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of Biological Physics, 39(4), 625–634. https://doi.org/10.1007/s10867-013-9322-z

Naibaho, D., Purba, E., Hanafiah, D. S., & Hasibuan, S. 2021. Radiosensitivity and effect of gamma ray irradiation on upland rice CV. Sidikalang. IOP Conference Series: Earth and Environmental Science, 782(3), 4–9. https://doi.org/10.1088/1755-1315/782/3/032068

Pradhan, B., Baral, S., Patra, S., Behera, C., Nayak, R., MubarakAli, D., & Jena, M. 2020. Delineation of gamma irradiation (60Co) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, Chlorella sp. Biocatalysis and Agricultural Biotechnology, 25(April), 101595. https://doi.org/10.1016/j.bcab.2020.101595

Ramchander, S., Ushakumari, R., & Pillai, M. R. 2015. Lethal dose fixation and sensitivity of rice varieties to gamma radiation. Indian Journal of Agricultural Research 2015, 49(1), 24–31.

Riviello-Flores, M. de la L., Cadena-Iñiguez, J., Ruiz-Posadas, L. del M., Arévalo-Galarza, M. de L., Castillo-Juárez, I., Hernández, M. S., & Castillo-Martínez, C. R. 2022. Use of Gamma Radiation for the Genetic Improvement of Underutilized Plant Varieties. Plants, 11(1161), 1–19.

Sathesh-Prabu, C., & Lee, Y.-K. 2016. Genetic Variability and Proteome Profiling of a Radiation Induced Cellulase Mutant Mushroom Pleurotus florida. Polish Journal of Microbiology, 65(3), 271–277.

Shu, Q. Y., B.P.Forster, & Nakagawa, H. 2012. Plant Mutation Breeding and Biotechnology. (Q. Y. Shu, B.P.Forster, & H.Nakagawa, Ed.). London, UK: CAB International.

Sparrow, A. H. 1961. Types of ionizing radiations and their cytogenetic effects (Mutation a). NAS-NRC.

Suliartini, N. W. S., Wangiyana, W., Aryana, I. G. P. M., & Sudharmawan, A. A. K. 2020. Radiosensitivity and Seedling Growth of Several Genotypes of Paddy Rice Mutants Irradiated with Gamma Rays at Different Doses. International journal of Horticulture, Agriculture and Food science, 4(6), 242–247. https://doi.org/10.22161/ijhaf.4.5.5

Tabasum, A., Cheema, A. A., Hameed, A., Rashid, M., & Ashraf, M. 2011. Radio sensitivity of rice genotypes to gamma radiations based on seedling traits and physiological indices. Pakistan Journal of Botany, 43(2), 1211–1222.

Tatar, I., Shamsiah, A., & Rahim, H. A. 2020. In vitro screening of gamma irradiated rice variety MR263 for drought tolerance using polyethylene glycol. Food Research, 4(5), 11–20. https://doi.org/10.26656/fr.2017.4(S5).008

Untari, Y., Efendi, & Sabaruddin. 2021. Effect Of Gamma Ray Irradiation And Harvesting Age On Viability And Vigor Of M2 Mutant Rice ( Oryza Sativa L ) Seeds. IOSR Journal of Agriculture and Veterinary Science, 14(3), 49–53. https://doi.org/10.9790/2380-1403024953

USDA. 2023. World agricultural production. Global Market Analysis. WAP 3-23. https://doi.org/10.32317/2221-1055.201907059

Volkova, P. Y., Bondarenko, E. V., & Kazakova, E. A. 2022. Radiation hormesis in plants. Current Opinion in Toxicology, 30.

Warman, B., Sobrizal, S., Suliansyah, I., Swasti, E., & Syarif, A. 2016. Perbaikan Genetik Kultivar Padi Beras Hitam Lokal Sumatera Barat Melalui Mutasi Induksi. Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 11(2), 125. https://doi.org/10.17146/jair.2015.11.2.2791

Ye, C., Li, X., Redoña, E., Ishimaru, T., & Jagadish, K. 2021. Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives. Rice Improvement. Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-66530-2_7

Downloads

Published

2023-06-27

Issue

Section

Articles